Association of Mutations in SLC12A1 Encoding the NKCC2 Cotransporter With Neonatal Primary Hyperparathyroidism.

نویسندگان

  • Dong Li
  • Lifeng Tian
  • Cuiping Hou
  • Cecilia E Kim
  • Hakon Hakonarson
  • Michael A Levine
چکیده

CONTEXT Primary hyperparathyroidism with hypercalciuria has not been described in the newborn period. OBJECTIVE Our objectives are to identify the genetic basis for neonatal primary hyperparathyroidism in a family with 2 affected children. SUBJECTS An African American boy presenting with mild neonatal primary hyperparathyroidism and hypercalciuria was evaluated at The Children's Hospital of Philadelphia. His older brother with neonatal primary hyperparathyroidism had died in infancy of multiple organ failure. METHODS We collected clinical and biochemical data and performed exome sequencing analysis on DNA from the patient and his unaffected mother after negative genetic testing for known causes of primary hyperparathyroidism. RESULTS Exome sequencing followed by Sanger sequencing disclosed 2 heterozygous mutations, c.1883C>A, p.(A628D) and c.2786_2787insC, p.(T931fsX10), in the SLC12A1 gene, which was previously implicated in antenatal type 1 Bartter syndrome. Sanger sequencing confirmed the 2 mutations in the proband and his deceased brother; both parents were heterozygous for different mutations and an unaffected sister was homozygous for wild-type alleles. CONCLUSIONS These results demonstrate a previously unrecognized association between neonatal primary hyperparathyroidism and mutation of SLC12A1, the cause of antenatal Bartter syndrome type 1, and suggest that the loss of sodium-potassium-chloride cotransporter-2 cotransporter activity influences parathyroid gland function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in the Human Na-K-2Cl Cotransporter (NKCC2) Identified in Bartter Syndrome Type I Consistently Result in Nonfunctional Transporters

Mutations in the Human Na-K-2Cl Cotransporter (NKCC2) Identified in Bartter Syndrome Type I Consistently Result in Nonfunctional Transporters Abnormalities of the Na-K-Cl Cotransporter in Bartter Syndrome. Bartter syndrome, an inherited disorder of renal NaCl reabsorption, can be caused by mutations of the Na-K-Cl cotransporter (NKCC2), potassium channel (ROMK), chloride channel (ClC-Kb), or Ba...

متن کامل

Novel SLC12A1 (NKCC2) mutations in two families with Bartter syndrome type 1.

Bartter syndrome (BS) type 1, also referred to antenatal BS, is a genetic tubulopathy with hypokalemic metabolic alkalosis and prenatal onset of polyuria leading to polyhydramnios. It has been shown that BS type 1 is caused by mutations in the SLC12A1 gene encoding bumetanide-sensitive Na-K-2Cl (-) cotransporter (NKCC2). We had the opportunity to care for two unrelated Japanese patients of BS t...

متن کامل

Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function.

The Na-K-Cl cotransporter (NKCC2) is the major salt transport pathway in the thick ascending limb of Henle's loop and is part of the molecular mechanism for blood pressure regulation. Recent screening of ∼3,000 members of the Framingham Heart Study identified nine rare independent mutations in the gene encoding NKCC2 (SLC12A1) associated with clinically reduced blood pressure and protection fro...

متن کامل

Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways.

Ion cotransporters, such as the Na(+)/Cl(-) cotransporter (NCC), control renal salt re-absorption and are regulated by the WNK-signalling pathway, which is over-stimulated in patients suffering from Gordon's hypertension syndrome. Here, we study the regulation of the NKCC2 (SLC12A1) ion cotransporter that contributes towards ~25% of renal salt re-absorption and is inhibited by loop-diuretic hyp...

متن کامل

Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2).

The Na-K-2Cl cotransporter (NKCC2; BSC1) is located in the apical membrane of the epithelial cells of the thick ascending limb of the loop of Henle (TAL). NKCC2 facilitates ∼20-25% of the reuptake of the total filtered NaCl load. NKCC2 is therefore one of the transport proteins with the highest overall reabsorptive capacity in the kidney. Consequently, even subtle changes in NKCC2 transport act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical endocrinology and metabolism

دوره 101 5  شماره 

صفحات  -

تاریخ انتشار 2016